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ABSTRACT: Probabilistic prediction of structural and nonstructural damage costs due to future earthquakes 
is one component of loss estimation currently being developed for use in performance-based earthquake engi-
neering. Sources of uncertainty in this prediction include epistemic and aleatory uncertainty in the site ground 
motion hazard, the building response, the damage measures of each of the many building elements, and repair 
cost of each of the elements. These are inter- and cross-correlated random variables. Two desired results are 
the total uncertainty in annual losses, and the contribution of each uncertainty source to the total uncertainty. 
Monte Carlo simulation is a simple solution, but it can be computationally expensive. This study proposes an 
alternative approach using First-Order Second-Moment (FOSM) methods for all but the (dominant) ground 
motion intensity variable. Suggestions for characterization of correlations are presented. A procedure for ap-
plying FOSM methods in the calculation of total uncertainty is outlined. The proposed technique is very effi-
cient, and easily used for sensitivity studies.  
 
 
 

1 INTRODUCTION 

Estimation of annual losses in a building due to 
earthquake damage is a quantity of interest to deci-
sion makers, and is a current topic of study in per-
formance-based earthquake engineering. Among the 
quantities to be determined are the uncertainty in the 
result, and the contribution of each source of uncer-
tainty to the total uncertainty. The Pacific Earth-
quake Engineering Research Center (PEER) has 
proposed the following framing equation for this 
analysis: 
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with terms defined in Section 1.1. This equation al-
lows for modular consideration of the ground motion 
hazard, building response, damage to building ele-
ments, element repair costs, and total repair cost 
(Cornell and Krawinkler, 2000, Porter 2001, Kraw-
inkler, 2002). 

One option for calculating uncertainty in the result is 
through Monte Carlo simulation (Porter, 2001). 

Simulation methods have straightforward methodol-
ogy and quantifiable accuracy, but can be expensive 
computationally, especially when multiple runs are 
required to calculate sensitivities. The objective of 
this study is to propose an alternative method of cal-
culating uncertainty using the First-Order Second-
Moment (FOSM) method (e.g. Melchers, 1999). We 
shall use this approximate method to “collapse out” 
several of the intermediate conditional random vari-
ables, leaving a mean and variance of Total Cost 
(TC) conditioned on the Intensity Measure (IM) of 
the ground motion. This information can then be 
combined (using numerical integration) with the 
ground motion hazard, |dλIM(x)|,  to obtain the ex-
pected annual total cost, variance in annual total 
cost, and the annual rate of exceeding a given total 
cost. 

1.1 Explanation of the Framing Equation 

The variables in Equation 1 are defined as follows: 
λTC(z) is the annual rate of exceeding a total repair 
cost of z, where total repair cost, TC is the decision 
variable under study. 
fTC|DVE(z,u) is the PDF of TC, conditioned on the 
vector of damage values of each element (DVEj is 



the damage value of element j). The assumption in 
the framework described below is that the total cost 
of repair is the sum of all element repair costs, but 
this can be easily generalized. 
fDVE|DM(u,v) is the PDF of the vector of damage val-
ues of each element, given the vector of damage 
states of each element (DMj is the damage state of 
element j). Mean repair costs can be estimated from 
sources such as R.S. Means Co.’s published materi-
als on construction cost estimating (R.S. Means Co. 
2002). Additional quantification of repair costs is a 
topic of current research. 
fDM|EDP(v,y) is the PDF of the vector of damage 
states, given the vector of engineering demand pa-
rameters. In current research, these damage states 
are typically discrete, and each state is described by 
a fragility function, which returns the probability of 
an element exceeding the damage state at a given 
EDP level. See Aslani and Miranda (2002) for ex-
amples. 
fEDP|IM(y,x) is the PDF of the vector of engineering 
demand parameters, given the intensity measure. For 
aleatory uncertainty, this distribution can be deter-
mined using, for example, Incremental Dynamic 
Analysis (Vamvatsikos and Cornell 2002). 
|dλIM(x)| is the absolute value of the derivative of the 
annual rate of exceeding a given value of the inten-
sity measure (the seismic hazard curve). The abso-
lute value is needed because the derivative is nega-
tive. See, for example, Kramer (1995) for 
background on hazard curves. 

2 ASSUMPTIONS 

A Markovian dependence is assumed for all distribu-
tions in the framework. For example, it is assumed 
that the distribution of the DM vector can be condi-
tioned solely on the EDP vector, and that knowledge 
of the IM provides no additional information. In this 
way, previous conditioning information does not 
need to be carried forward through all future distri-
butions, reducing complexity. A conditioning vari-
able that contains all necessary conditional informa-
tion is deemed a “sufficient” descriptor (Luco 2002). 
All damage is assumed to occur on an element level. 
The total cost of damage to the structure is then the 
sum of the damage cost of each element in the struc-
ture. The exception to this assumption is when col-
lapse occurs, and repair costs will be a function of 
the collapse, rather than individual element re-
sponses. The treatment of this exception is explained 
below. 
All relations in the framework are assumed to be 
scalar functions. For example, the conditional distri-

bution of the Damage Measure of element j is a 
function of only the ith Engineering Demand Pa-
rameter. Or alternatively,  
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Note also that the function is not conditioned on 
variables from any previous steps, because of the 
Markovian process assumption described earlier. 
To calculate total uncertainty in our decision vari-
able, it will be necessary to account for both epis-
temic and aleatory uncertainty. The framework out-
lined here is appropriate for either source of 
uncertainty. These two sources of uncertainty are 
uncorrelated, allowing their contributions to be cal-
culated separately for simplicity, and towards the 
end of the procedure. This is further discussed in 
Section 3.6. 
These assumptions are believed to be consistent with 
the most advanced current seismic loss estimation 
efforts. Most can be relaxed without formal diffi-
culty. 

3 PROCEDURE 

The procedure outlined makes use of FOSM ap-
proximations to calculate the mean and variance of 
TC given IM. This information can then be com-
bined with the ground motion hazard, |dλIM(x)|,  to 
obtain the expected annual total cost, variance in an-
nual total cost, and (together with a distribution type 
assumption), the mean annual rate of exceeding a 
given total cost. For this final combination with the 
ground motion hazard, FOSM approximations are 
not used. The FOSM approximations are justified by 
the assumption that the uncertainty in the IM hazard 
curve is the most significant contributor to variance 
of the total loss. Therefore, we are retaining the full 
distribution for IM itself, but using the FOSM ap-
proximations for all moments conditioned on IM. In 
addition, we likely do not have information about 
the full distributions of some variables (for example, 
repair costs), and so neglecting higher moments of 
these distributions does not result in a significant 
loss of available information.  
Note that we are working with natural logarithms of 
the variables described previously. This allows us to 
work with sums of terms, rather than products. We 
revert to a non-log form for the final result. The pro-
cedure is outlined in the following sections. 

3.1 Specify ln  IM|EDP

The proposed model in this study is 
EDPi|IM=Hi(IM)εi(IM), where Hi(IM) is the (deter-
ministic) mean value of EDPi given IM, and εi(IM) 



is a random variable with mean of one, and condi-
tional variance adjusted to model the variance in 
EDPi. (We introduce the random variable notation 
X|Y, to denote that the model of X is conditioned on 
Y.) Then when we use the log form of EDPi, we 
have a random variable of the form 
ln(EDPi|IM)=ln(Hi(IM))+ln(εi(IM)). Note that the 
expected value of ln(EDPi|IM) is ln(Hi(IM)), and the 
variance of ln(EDPi|IM) is equal to the variance of 
ln(εi(IM)).  Both ln(Hi(IM)) and Var[ln(εi(IM))], as 
well as the correlations between lnEDP’s, can be de-
termined from Incremental Dynamic Analysis. We 
will need the following information for our calcula-
tions: 

E[ln EDPi | IM], denoted hi(IM) for all EDPi (3) 

Var[ln EDPi | IM], denoted h*i(IM) for all EDPi (4) 

ρ(ln EDPi, ln EDPj | IM), denoted ĥij (IM) for all 
{EDPi, EDPj} (5) 

These functions will be used in Section 3.3 below. 

3.2 Specify DM and ln , and 
collapse to  

EDPln|
DVE ln|ln

DM|DVE
EDP

The discrete states of the Damage Measure variable 
found in current loss estimation (Aslani and 
Miranda, 2002, Porter, 2001) are not compatible 
with the FOSM approach, which requires continuous 
functions for the moments. To deal with the discrete 
states, we take advantage of the fact that we can al-
ways “collapse” the two distributions 

and  into one continuous 
distribution  by integrating over the 
appropriate variable: 

EDPDM ln|
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For a given element with n possible damage states, 
we use a set of element fragility functions F1, F2 … 
Fn, such that Fi(y)=P(DM>di|EDP=y) (see Figure 1). 
We also define F0≡1 (the probability that each ele-
ment has at least zero damage is one). These func-
tions will have a corresponding set of distributions 
c1, c2 … cn of element repair costs such that c  is 
a probability distribution of DVE, given that the 
damage state equals d

)(vi

i (see ). With this in-
formation, we can determine the first two moments 
of the collapsed distributions. For example, Aslani 
and Miranda (2002) document the development of 
one set of these functions. 

Figure 2

Figure 2: Element Repair Costs 

 

 
Figure 1: Example Element Fragility Functions 
 

 

 
From the total probability theorem, we know that in 
this case, Equation 6 can be written in scalar form 
for each DVE as: 
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(recall our assumption that each DVE is dependent 
on a single EDP). For our FOSM purposes, further-
more, it is sufficient to find simply the conditional 
means, variances, and covariances of the DVE’s 
given the EDP’s. Thus, taking the mean of this PDF, 
we have the result: 
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Applying the same thinking to , and 
recognizing that Var[X]=E[X
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2, we have the fol-
lowing result: 
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Figure 3: Collapsed distribution DVE | EDP 

Figure 3
 

 shows an example of the mean and mean 
plus or minus one sigma, as generated from the ex-
ample distributions shown in Figure 1 and Figure 2. 

3.2.1 Quantifying Correlations 
 
We now need to determine correlations among the 
DVE’s of all elements in the structure. Note that like 
the mean and variance, these correlations are condi-
tioned on the EDP’s. While these calculations are 
straightforward, estimation of the necessary correla-
tion inputs is a difficult task due to a lack of data. In 
the absence of additional information, it may be 
helpful to use the following characterization scheme.  
Let us assume for this purpose a model of the form: 

km ElElClassStrucikik EDPgEDPDVE εεε lnlnln)(lnln|ln +++=  (10) 

where Strucε  represents uncertainty common to the 
entire structure, 

mElClassε  represents uncertainty 
common only to elements of class “m” (e.g. drywall 
partitions, moment connections, etc.), and 

kElε repre-
sents uncertainty unique to element k. All of these 
ε ’s are assumed to be mutually uncorrelated. We 
then define: 

2]ln|[ln StruciStruc EDPVar βε =  (11) 
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βε =  for all m (12) 
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k

βε =  for all k (13) 

Then the variance of lnDVEk|lnEDPi is the sum of 
these variances. For this special case, a simple 
closed form solution exists for the correlation coeffi-
cient between two element DVE’s. If the two ele-
ments are of the same element class, then: 
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If the elements are of different element classes, then 
their correlation coefficient is given by: 
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Note that this formulation requires βElClass
2 to be 

equal for all element classes, and βEl
2 to be equal for 

all elements. If this is excessively limiting, a closed 
form solution also exists that allows βElClass

2 to vary 
by class, and βEl

2 to vary by element (Baker and 
Cornell, 2002). The principles used for this solution 
are developed in Ditlevsen (1981).  
The use of more than two uncertain terms, and the 
use of β2 terms that vary by class or element are both 
generalizations of the basic equicorrelated model. 
Thus, we will refer to a model incorporating any of 
these generalizations as a generalized equicorrelated 
model. The correlation matrix for a generalized 
equicorrelated model will have off-diagonal terms 
that vary from term to term, as opposed to the strict 
equicorrelated model, where all off-diagonal terms 
are identical. 
 
We have now concluded the collapse of the distribu-
tion lnDVE|lnEDP. We have the conditional mean 
and variance functions of lnDVEk|lnEDPi, obtained 
by collapsing the distributions provided (see Equa-
tions 8 and 9), and correlation coefficients deter-
mined using the generalized equicorrelated model 
(see Equations 14 and 15). We choose for future no-
tational clarity to denote these results as: 

E[ln DVEk | ln EDPi], denoted gk(ln EDPi) for all DVEk (16) 

Var[ln DVEk | ln EDPi], denoted g*k(ln EDPi) for all DVEk (17) 

ρ(ln DVEk, ln DVEl | ln EDPi, ln EDPj), denoted ĝkl(ln EDPi, ln EDPj) 
for all {DVEk, DVEl} (18) 

With this information quantified, we can now use it 
along with the results from Section 3.1 to calculate 
ln DVE|IM. 

3.3 Calculate ln  IM|DVE

Using information from above, we can calculate the 
first and second moments of . This in-
volves collapsing out the dependence on EDP , as 
suggested in Equation 19 below.  

IM|ln DVE
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To maintain tractability, we shall use an FOSM ap-
proximation here. To remove dependence on EDP , 
we take the expectation of ln of with respect to 

 (given IM). We write this as 
E[lnDVE

DVE
EDPln

k|IM]=EEDPi|IM[E[lnDVEk|lnEDPi]], where 
EEDPi|IM[⋅] denotes this particular conditional expec-
tation operator. Substituting our notation from Equa-
tions 16 and 17, we have: 
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Using a similar approach to conditional moments, 
and using the result from probability theory: 
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we can also derive the variance and covariances of 
ln DVEk | IM with the usual FOSM approximations: 
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3.4 Switch to the non-log form  IM|DVE

To switch to the non-log form of DVE, we can use 
the first-order approximation E[eX] ≅  eE[X]. Then we 
have the following results: 
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These element results can now be used to compute 
the moments of TC | IM. 

3.5 Compute moments of TC | IM 
Under the assumption that Total Cost is the sum of 
element costs, we can now aggregate the results 
from all individual elements to compute an expecta-
tion and variance for the total cost of damage to the 
entire building. The expected total cost is the sum of 
expected element costs: 
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27
We denote the expected value computed in Equation 

 as q(IM). The variance of total cost can is the 
sum of element variances, including covariances be-
tween element costs: 
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28
We denote the expected value computed in Equation 

 as q*(IM). 

3.6 Repeat Procedure to Calculate Epistemic 
Uncertainty 

We assume a model of the form TC|IM=q(IM) URεε , 
where q(IM) is the best estimate of the conditional 
mean as calculated in Equation 27, and Rε  and 

Uε are uncorrelated random variables representing 
aleatory and epistemic uncertainty, respectively. 
Then 

 URIMqIMTC εε lnln)(ln|ln ++=   (29) 

Because Rε  and Uε are uncorrelated, we may deal 
with them in separate steps. The above procedure us-
ing aleatory uncertainty alone allowed us to find the 
variance due to Rε . We must now repeat the proce-
dure to calculate the variance due to Uε . The total 
uncertainty can then be calculated by combining the 
two uncertainties as follows: 

 Var ][ln][ln]|[ln UR VarVarIMTC εε +=  (30) 
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We denote this βTC|IM
2. Note that we have switched 

to logs again to allow use of sums rather than prod-
ucts. The change can be made using the following 
relationship: 
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We denote Var[ln εR] as βR
2. From this value, we 

can then calculate Var  using Equation 
. Once we have calculated Var , ac-

counting for both aleatory and epistemic uncertainty, 
we can denote this value as q*(IM), and use it in the 
equations to follow. 

]|[ln IMTC
[ln ]| IMTC

When repeating the procedure to find the variance in 
TC given IM due to epistemic uncertainty, epistemic 
uncertainties for each conditional random variable 
will need to be estimated, and characterization of 
correlation is again a challenging task. It is sug-
gested that the generalized equicorrelated model de-
veloped in Section 3.2.1 may be used effectively for 
this problem. 



4 ACCOUNTING FOR COLLAPSE CASES 

At high IM levels, the potential exists for a structure 
to experience collapse (defined here as extreme de-
flections at one or more story levels). In this build-
ing state, repair costs are more likely a function of 
the collapse, rather than individual element damage. 
In fact, the structure is likely not to be repaired at all. 
Thus, our predicted loss may not be accurate in these 
cases. In addition, the large deflections predicted in 
a few cases will skew our expected values of some 
EDP’s such as interstory drifts, although collapse is 
only occurring in a fraction of cases. To account for 
the possibility of collapse, we would like to use the 
technique outlined above for no-collapse cases, and 
allow for an alternate loss estimate when collapse 
occurs. The following modification is suggested. 
Note, in the following calculations, we are condi-
tioning on a collapse indicator variable. To commu-
nicate this, we have denoted the collapse and no col-
lapse condition as “C” and “NC” respectively.  
•  At each IM level, compute the probability of no 

collapse. This probability, , is sim-
ply the fraction of analysis runs where no col-
lapse occurs 

)|( IMNCp

•  Calculate results using the FOSM analysis as 
before, but using only the runs that resulted in 
no collapse. We now denote these results 

 and Var . ],|[ NCIMTCE ],|[ NCIMTC
•  Define an expected value and variance of total 

cost, given that collapse has occurred, denoted 
 and Var . These 

values will likely not be functions of IM, but the 
conditioning on IM is still noted for consis-
tency. 

],|[ CIMTCE ],|[ CIMTC

The expected value of TC for a given IM level is 
now the average of the collapse and no collapse TC, 
weighted by their respective probabilities of occur-
ring: 
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The variance can be computed using the property 
from Equation 21: 
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The procedure can now be implemented as before, 
using these moments. This collapse-case modifica-
tion is probably necessary for any implementation of 
the model, as analysis of shaking (IM) levels suffi-
cient to cause large financial loss are likely also to 

cause collapse in some representative ground motion 
records. 

5 INCORPORATE THE SITE HAZARD 

The expected value and variance of TC given IM can 
now be incorporated with the site hazard to compute 
the expected annual loss, and the rate of exceeding a 
given Total Cost. 

5.1 Annual Loss 

Using the functions q(IM) and q*(IM), and the de-
rivative of the hazard curve, )(IMdλ , the mean and 
variance of TC per annum can be calculated by nu-
merical integration: 
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Note that the first term of Equation 35 is the contri-
bution from uncertainty in the cost function given 
IM, and the second two terms are the contribution 
from uncertainty in the IM. 

5.2 Rate of Exceedance of a Given TC 

The first and second moment information for TC|IM 
can be combined with a site hazard to compute 
λTC(z), the annual frequency of exceeding a given 
Total Cost z.  For this calculation, it is necessary to 
assume a probability distribution for TC|IM that has 
conditional mean and variance equal to the values 
calculated previously. The rate of exceedance of a 
given TC is then given by: 

)(),()( | xdxzFz IM
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5.3 Analytic Solution 

Generally, the integral above will require a numeri-
cal integration. However, if the following simplify-
ing assumptions are made, an analytic solution is 
available: 
•  The distribution of TC|IM is lognormal 
•  βTC|IM is approximated as constant for all IM; 

we call this constant value β*TC|IM 
•  E[TC|IM] is approximated by a function of the 

form a′IMb, where a and b are constants. Note 
that this is consistent with fitting the median of 
TC|IM with aIMb, where  

2
|*2

1
' IMTCeaa β−=  (37) 



•  An approximate hazard curve of the form 
λIM(x)=k0x-k is fit to the true site hazard curve 

 
Under these conditions, the annual rate of exceeding 
a given Total Cost is given by: 
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We note that if the a from Equation 37 is substituted 
into Equation 38, then the result becomes  















=

−
2

|2

2

0 *
2
1exp)( IMTC

b
k

TC b
k

a
zkz βλ  (39) 

This equation is useful as an efficient estimate of 
λTC(z), but it is also very informative as a measure of 
the relative importance of uncertainty in the calcula-
tion. The term:  

b
k

a
zk

−









'0  (40) 

in the Equation 38 would be the result if β*TC|IM 
were to equal zero – that is if we made all calcula-
tions only using expected values and neglected cost 
uncertainty given IM. The term:  
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in Equation 38 is an amplification factor that varies 
with the uncertainty in TC|IM present in the prob-
lem. Thus for this special case, it is simple to calcu-
late the effect of uncertainty on the rate of exceeding 
a given Total Cost. As we shall show below, it may 
not be unreasonable for this factor to increase λTC(z) 
by a factor of 10, so the effect of uncertainty may 
very well be significant. However, even for large 
values of β*TC|IM, the annual rate of exceedance is 
still dominated by the term from Equation 40. It is 
for this reason that it has been proposed here that the 
FOSM approximations of β*TC|IM performed above 
are sufficient to provide an accurate result. 
For illustration, let us assume that the expected TC 
as a function of IM has been estimated using the 
above technique as:  

221]|[ IMeIMTCE −−=  (42) 
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This function could be approximated by the func-
tion: 

8.14.1]|[ IMIMTCE =  (43) 

43A plot of these two functions is shown in Figure 4. 
Note that the analytic function is a good fit over the 
range 0<TC<0.5. 
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Figure 4: Expected TC | IM, for  and 
1.4IM

221]|[ IMeIMTCE −−=
1.8 fit 
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5.4 Comparison of Results from Numerical 
Integration and Analytic Solution 

Both the numerical solution and the analytical solu-
tion outlined above in Sections 5.2 and 5.3, respec-
tively, can be evaluated for several values of TC. 
The results can then be plotted to generate a loss 
curve, as shown below in Figure 5. This figure was 
generated using the expected TC curves shown in 

 above. For both solutions, we have as-
sumed a hazard curve of the form: 

kx −
0)  (44) 

where k0 and k are constants equal to 0.002 and 3, 
respectively. We have also assumed βTC|IM equal to 
0.6 for both solutions. 
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Figure 5: λTC(z): Comparison of numerical integration and ana-
lytic solution  

Figure 5
 

 also allows us to compare the analytical so-
lution to the numerical one. For the functions given 
in Equations 42 and 43, the analytic solution is a 
good approximation of the numeric solution over the 
TC range where Equation  closely fit Equation  
(0<TC<0.5). As we move to higher TC levels, where 



the analytical solution was not a good fit, the λTC(z) 
results also diverge. 

6 EFFECT OF UNCERTAINTY ON LOSSES 

The variance in annual losses is the result that most 
explicitly shows the effects of uncertainty. However, 
uncertainty also has an effect on the annual rate of 
exceeding a given TC. This is most clearly seen in 
the analytical solution of Equation 38, where β*TC|IM 
appears in the equation for λTC(z). This is discussed 
in Section 5.3. The anticipated effect is for uncer-
tainty to increase the rate of occurrence of a given 
TC. However, depending on the slopes of the hazard 
curve and mean of TC as a function of IM, (defined 
by the parameters k and b), increasing β*TC|IM can 
potentially decrease λTC(z), or have no effect at all. 
Using the more general numerical integration of 
Equation 36, we find similar results, as shown in 

. In this example, using the functions as-
sumed previously, we see that the shift in results is 
minor for β*

Figure 6

TC|IM<1, but for β*TC|IM=2, the expected 
annual frequency of occurrence of large costs has 
increased by approximately an order of magnitude. 
Because our expected repair cost function does not 
ever produce a loss greater than 1, the inclusion of 
uncertainty is critical for estimating occurrence of 
total costs greater than 1, as seen in the figure. 
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Figure 6: Effect of Uncertainty on Frequency of Exceedance of 
Total Cost 
 
The important conclusion to be drawn from this re-
sult is that using expected values alone and ignoring 
uncertainties, although tempting because of its ease, 
can potentially lead to inaccurate results. 

CONCLUSION 

A procedure for estimation of uncertainty in repair 
costs due to earthquake damage has been proposed. 
This procedure works within the framework pro-

posed by PEER for performance-based earthquake 
engineering. Total cost defined is a function of re-
pair costs for individual building elements, except in 
the collapse case, where a separate cost estimation is 
used. Identified aleatory and epistemic uncertainty in 
ground motion hazard, building response, damage to 
building elements and element repair costs is com-
bined to produce an uncertainty in total repair cost. 
The proposed procedure uses the First-Order Sec-
ond-Moment (FOSM) method to collapse several 
conditional random variables into a single random 
variable. Numerical integration is then used to in-
corporate the ground motion hazard, where the un-
certainty is most significant. The resulting informa-
tion is expected annual loss, variance in annual loss, 
and the annual rate of exceeding a given cost.  
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